The breath of life — did increased oxygen levels trigger the Cambrian Explosion?

A literal reading of the fossil record would suggest that something uniquely strange went on during the first 10 million years of metazoan evolution. Metazoan animal life as we know it did not appear until the Cambrian, 5-4 million years ago (apart from the enigmatic 660-690 million year old Ediacaran fauna). But just 10 million years later the metazoans had achieved their maximum Cambrian diversity; well-preserved fossil representatives of two thirds of all known phyla are present in rocks about 533 million years old. An flurry of recent research agrees with Darwin’s suggestion that the absence of fossil evidence of the metazoans before the Cambrian Explosion is not evidence that the metazoans were absent. The Cambrian Explosion may not record the origin and explosive radiation of metazoan phyla, but instead it may record an extraordinary period when most of the known phyla simultaneously acquired both the large size and hard skeletons required for fossilization. Several recent independent studies provide molecular clocks that date the origin of the metazoans to at least 400 million years before the Cambrian. Developmental arguments suggest that there may have been a long period of cryptic evolution when metazoans resembled modern planktonic larvae (which do not fossilize). Finally, recent analysis of the ancient atmosphere may have provided a reason why so many phyla first appear in the fossil record simultaneously. The Cambrian Explosion may have been triggered when rising oxygen (O_2) concentrations passed a threshold that permitted the development of large size and hard skeletal structures.

The origin of the metazoans has been firmly put back into the middle of the proterozoic era, at about 1000 million years ago, by two independent molecular clock estimates of the times of divergence of the major animal groups. Doolittle and coworkers' use amino acid sequences from 57 different proteins, and Wray and coworkers' use DNA sequences from seven genes to provide molecular clocks calibrated against the vertebrate fossil record (reviewed in the previous issue of TREE by Michael Bell). The amino acid clock suggests a divergence time for the two main metazoan groups (Deuterostomes and Protostomes) of about 675 million years ago, while the DNA sequence clock suggests that this split had already occurred.
about 1200 million years ago. Both sets of data point to an origin of the metazoans at about the middle of the protozoic at least 500 million years before the Cambrian Explosion.

But if metazoans were around for almost 500 million years before the Cambrian Explosion, why did the fossil record remain so barren? Only about two thirds of the extant phyla have left any fossil record, even of planktonic metazoans much like modern planktonic larvae. Circumstantial palaeontological evidence supports this possibility. Trace fossils and even possible fossilized metazoan faecal pellets are widespread from about 1000 million years ago onwards, and the diversity and abundance of stromatolites declined markedly at this time — possibly as a result of metazoan grazing and burrowing activity. It seems likely that the metazoans originated around 1000 million years ago, and the Cambrian Explosion records a period when species distributed across a wide range of phyla suddenly and simultaneously became large enough to leave soft-body fossils, and developed the hard shell-like skeletons that make the normal fossilization process possible. However, that still leaves the puzzle of why metazoan animals spread across the whole range of phyla should suddenly develop the ability to fossilize at the same time.

One possible explanation of the sudden simultaneous evolution of large size and of hard skeletons is that both these features demand a high environmental O₂ concentration. Atmospheric O₂ is a by-product of photosynthesis, and O₂ concentrations are known to have risen during the protozoic. Large (macroscopic) size means that the distance from the external environment to internal metabolically active tissues is large. A high environmental O₂ concentration is required to drive the diffusion of O₂ any distance into the body tissues. Large size in metazoans is associated with a high metabolic rate and this also requires a high O₂ concentration. Many metazoan animals may also require a high environmental O₂ concentration because the synthesis of the ubiquitous structural protein collagen requires a relatively high O₂ concentration, and this fact may well underlie the sudden simultaneous acquisition of hard parts by a wide range of phyla at the start of the Cambrian. Indeed, hard parts themselves may have only become feasible once O₂ concentrations passed some threshold level — a hard shell or exoskeleton will inevitably reduce the exposed surface available for the exchange of respiratory gases.

Recently, Canfield and Teske have presented evidence that around 1000 million years ago atmospheric O₂ levels passed a threshold concentration that triggered a widespread radiation of sulphide-oxidizing bacteria. They suggest that the radiations of eukaryotes, and within them the metazoans, may also have been driven by rising atmospheric O₂ concentrations.

Purification of sulphate-reducing bacteria produce sulphide deposits that are enriched in the 32S isotope by 1.8±1.1%. However, marine sulphide deposits are typically enriched in the 34S isotope by 5.1±1.1%. Sulphide-reducing bacteria make their living by reducing sulphate to sulphide, but in areas with steep opposing concentration gradients of O₂ and sulphide, there also exist sulphide-oxidizing bacteria that make their living by oxidizing sulphide back to sulphur or sulphur. Canfield and Teske argue that the enhancement of the 34S isotope in recent marine sulphide deposits is due to the repeated fractionation as sulphate is bacterially reduced to sulphide and then oxidized back to sulphate by sulphide-oxidizing bacteria in a continuous oxidative sulphur-cycle. They suggest that a distinct change in the sulphur isotope ages of marine sulphide deposits from between 640 and 1050 million years ago indicates the time when atmospheric O₂ concentrations first became high enough to permit the oxidative sulphur-cycle to operate and sulphide-oxidizing bacteria to evolve.

Sulphide-oxidizing bacteria require steep opposing sulphide and O₂ concentration gradients for their metabolic activity. Some minimum level of atmospheric O₂ concentration must have been present in the atmosphere before sulphide-oxidizing bacteria could have evolved. Canfield and Teske argue that once atmospheric O₂ concentrations reached 5% of present levels marine coastal sediments less than 200 m deep would have provided favourable conditions for the evolution of sulphide-oxidizing bacteria, and at an atmospheric O₂ concentration of 18% of current levels half of all coastal marine sediments would have been a suitable habitat for sulphide-oxidizing bacteria. By using a 16s rRNA molecular clock, they are able to date the origin of the sulphide-oxidizing bacteria to an absolute maximum date of 1440 million years ago, a date which is in broad agreement with the timing of the change in the sulphur isotope ratios in marine sulphide deposits that they report. Canfield and Teske’s data suggest that atmospheric O₂ concentrations passed from below to above 5–18% of current levels somewhere between 640 and 1050 million years ago, and this rise in atmospheric O₂ levels triggered the radiation of sulphide-oxidizing bacteria. They suggest that this rise in atmospheric O₂ concentrations may also have triggered the origin of the eukaryotes and the radiation of the metazoans. However, there remains an unsolved problem: the rise in the concentration of O₂ in the ancient atmosphere is dated from 1050 million years ago, and this contradicts the Cambrian Explosion by some 500 million years. Canfield and Teske have identified a possible threshold concentration which, once crossed, permitted the evolution of the sulphur-oxidizing bacteria. Was the Cambrian Explosion triggered as the O₂ concentration in the ancient atmosphere passed another threshold, a threshold that permitted the development of large size and of hard skeletal structures?

Adrian L.R. Thomas
Department of Zoology, Oxford University
South Parks Road, Oxford, UK OX1 3PS

References

Students!
50% discount on Trends in Ecology & Evolution subscriptions!

For details see subscription card bound in this issue